Respuesta :
sin(a + b) = sin(a)cos(b) + sin(b)cos(a)
sin(x + pi) = sin(x)cos(pi) + cos(x)sin(pi)
sin(pi) = 0cos(pi) = -1
sin(x + pi) = sin(x)(-1) + cos(x)(0)
sin(x + pi) = -sin(x) + 0
sin(x + pi) = sin(x)cos(pi) + cos(x)sin(pi)
sin(pi) = 0cos(pi) = -1
sin(x + pi) = sin(x)(-1) + cos(x)(0)
sin(x + pi) = -sin(x) + 0
By using the sine of the sum formula, we prove the given relation.
How to prove the trigonometric relation?
Here we need to use the formula.
sin(a + b) = sin(a)*cos(b) + sin(b)*cos(a)
If we apply that to the left side of the equation, we get:
sin(x + pi) = sin(x)*cos(pi) + sin(pi)*cos(x).
Now remember that:
- cos(pi) = -1
- sin(pi) = 0
Then:
sin(x + pi) = sin(x)*cos(pi) + sin(pi)*cos(x) = -sin(x)
sin(x + pi) = -sin(x).
So we just prove the above relation.
If you want to learn more about trigonometry, you can read:
https://brainly.com/question/13276558