Respuesta :
---------------------------------------------------------------------------------
Difference of (3x² - 2x + 5) - (x² + 3x - 2)
---------------------------------------------------------------------------------
(3x² - 2x + 5) - (x² + 3x - 2)
= 3x² - 2x + 5 - x² - 3x + 2
= 2x² -5x + 7
---------------------------------------------------------------------------------
(2x² -5x + 7) multiply by 12x²
---------------------------------------------------------------------------------
12x²(2x² -5x + 7)
= 24x⁴ - 60x³ + 84x²
---------------------------------------------------------------------------------
Answer: 24x⁴ - 60x³ + 84x²
---------------------------------------------------------------------------------
Difference of (3x² - 2x + 5) - (x² + 3x - 2)
---------------------------------------------------------------------------------
(3x² - 2x + 5) - (x² + 3x - 2)
= 3x² - 2x + 5 - x² - 3x + 2
= 2x² -5x + 7
---------------------------------------------------------------------------------
(2x² -5x + 7) multiply by 12x²
---------------------------------------------------------------------------------
12x²(2x² -5x + 7)
= 24x⁴ - 60x³ + 84x²
---------------------------------------------------------------------------------
Answer: 24x⁴ - 60x³ + 84x²
---------------------------------------------------------------------------------
The generally acceptable form of an expression is referred to as the standard form.
The standard form of the expression is: [tex]\mathbf{x^4 - \frac 52 x^3 + \frac 72 x^2}[/tex]
The expression is given as:
[tex]\mathbf{(3x^2 - 2x + 5) - (x^2 + 3x - 2)}[/tex]
Open brackets
[tex]\mathbf{(3x^2 - 2x + 5) - (x^2 + 3x - 2) = 3x^2 - 2x + 5- x^2 - 3x + 2}[/tex]
Collect like terms
[tex]\mathbf{(3x^2 - 2x + 5) - (x^2 + 3x - 2) = 3x^2 - x^2 - 2x - 3x+ 5 + 2}[/tex]
[tex]\mathbf{(3x^2 - 2x + 5) - (x^2 + 3x - 2) = 2x^2 - 5x+ 7}[/tex]
Next, we multiply both sides by [tex]\mathbf{\frac 12 x^2}[/tex]
So, we have:
[tex]\mathbf{\frac 12 x^2 [(3x^2 - 2x + 5) - (x^2 + 3x - 2)] =\frac 12 x^2 [2x^2 - 5x+ 7]}[/tex]
Expand
[tex]\mathbf{\frac 12 x^2 [(3x^2 - 2x + 5) - (x^2 + 3x - 2)] =x^4 - \frac 52 x^3 + \frac 72 x^2}[/tex]
Hence, the standard form of the expression is: [tex]\mathbf{x^4 - \frac 52 x^3 + \frac 72 x^2}[/tex]
Read more about expressions in standard forms at:
https://brainly.com/question/551289