Respuesta :

---------------------------------------------------------------------------------
Difference of (3x² - 2x + 5) - (x² + 3x - 2)
---------------------------------------------------------------------------------
(3x² - 2x + 5) - (x² + 3x - 2)

= 3x² - 2x + 5 - x² - 3x + 2

= 2x² -5x + 7

---------------------------------------------------------------------------------
(2x² -5x + 7) multiply by 12x²
---------------------------------------------------------------------------------
12x²(2x² -5x + 7) 

= 24x⁴ - 60x³ + 84x²

---------------------------------------------------------------------------------
Answer: 24x⁴ - 60x³ + 84x²
---------------------------------------------------------------------------------

The generally acceptable form of an expression is referred to as the standard form.

The standard form of the expression is: [tex]\mathbf{x^4 - \frac 52 x^3 + \frac 72 x^2}[/tex]

The expression is given as:

[tex]\mathbf{(3x^2 - 2x + 5) - (x^2 + 3x - 2)}[/tex]

Open brackets

[tex]\mathbf{(3x^2 - 2x + 5) - (x^2 + 3x - 2) = 3x^2 - 2x + 5- x^2 - 3x + 2}[/tex]

Collect like terms

[tex]\mathbf{(3x^2 - 2x + 5) - (x^2 + 3x - 2) = 3x^2 - x^2 - 2x - 3x+ 5 + 2}[/tex]

[tex]\mathbf{(3x^2 - 2x + 5) - (x^2 + 3x - 2) = 2x^2 - 5x+ 7}[/tex]

Next, we multiply both sides by [tex]\mathbf{\frac 12 x^2}[/tex]

So, we have:

[tex]\mathbf{\frac 12 x^2 [(3x^2 - 2x + 5) - (x^2 + 3x - 2)] =\frac 12 x^2 [2x^2 - 5x+ 7]}[/tex]

Expand

[tex]\mathbf{\frac 12 x^2 [(3x^2 - 2x + 5) - (x^2 + 3x - 2)] =x^4 - \frac 52 x^3 + \frac 72 x^2}[/tex]

Hence, the standard form of the expression is: [tex]\mathbf{x^4 - \frac 52 x^3 + \frac 72 x^2}[/tex]

Read more about expressions in standard forms at:

https://brainly.com/question/551289