Respuesta :
f(x) = 3x^4 - x³ + 3x² + x - 3
x = 0f(0) = 3(0)^4 - 0³ + 3(0²) + 0 - 3f(0) = 0 - 0 + 0 + 0 - 3f(0) = -3
f(1) = 3(1)^4 - 1³ + 3(1²) + 1 - 3f(1) = 3 - 1 + 3 + 1 -3f(1) = 7 - 4f(1) = 3
x = 0 : f(0) = -3x = 1 ; f(1) = 3
1 - 0 / 3 - (-3) = 1 / 6
x = 0f(0) = 3(0)^4 - 0³ + 3(0²) + 0 - 3f(0) = 0 - 0 + 0 + 0 - 3f(0) = -3
f(1) = 3(1)^4 - 1³ + 3(1²) + 1 - 3f(1) = 3 - 1 + 3 + 1 -3f(1) = 7 - 4f(1) = 3
x = 0 : f(0) = -3x = 1 ; f(1) = 3
1 - 0 / 3 - (-3) = 1 / 6
Answer:
the average rate of change = 6
Step-by-step explanation:
[tex]f(x) = 3x^4 - x^3 + 3x^2 + x - 3[/tex]
To find average rate of change from x=0 to x=1 we apply formula
[tex]Average = \frac{f(b)-f(a)}{b-a}[/tex]
here a= 0 and b = 1
Lets find out f(b) that is f(1), plug in 1 for x in f(x)
[tex]f(1) = 3(1)^4 - (1)^3 + 3(1)^2 + (1) - 3=3[/tex]
Plug in 0 for x
[tex]f(0) = 3(0)^4 - (0)^3 + 3(0)^2 + (0) - 3=-3[/tex]
f(0)= -3, f(1)=3, a=0, b=1. Now apply formula
[tex]Average = \frac{f(1)-f(0)}{1-0}[/tex]
[tex]Average = \frac{3-(-3)}{1}=6[/tex]
the average rate of change from x = 0 to x = 1 is 6