Respuesta :

[tex]\Large \frac { x }{ y } [/tex] [tex]\begin{matrix} \rightarrow numerator \\ \rightarrow denominator \end{matrix}[/tex]


If two (or more) fractions have the same number as their denominator, you can just go ahead and add their numerators, without changing the denominator. For example:

[tex]\frac { 1 }{ 2 } [/tex] and [tex]\frac { 4 }{ 2 } [/tex] has the same number (2) as their denominator. So we will add their numerators, without changing the denominator.

[tex]\frac { 1 }{ 2 } +\frac { 4 }{ 2 } \quad =\quad \frac { 1+4 }{ 2 } \quad =\quad \frac { 5 }{ 2 } [/tex]

So we added the numerators (1 + 4 = 5) and kept the denominator same (2) and we got ([tex] \frac{5}{2} [/tex]

This was the case where the fractions' denominator was same. What if it's not ?

If their denominator isn't equal, we're gonna have to equalize them ourself. How to do that ?

Let's show it with an example :

[tex]\frac { 1 }{ 2 } [/tex] and [tex]\frac { 3 }{ 4 } [/tex] do no have the same number as their denominator. To be able to add them, we have to equalize their denominators.

[tex]\frac { 1 }{ 2 } [/tex] 's denominator is 2 and [tex]\frac { 3 }{ 4 } [/tex] 's is 

What can we do to equalize them ? Well, 4 is two times 2 ( [tex]4 = 2\cdot 2[/tex] ) So we cane multiply the denominator of [tex]\frac { 1 }{ 2 } [/tex] (which is 2) with 2 , to equal it to [tex]\frac { 3 }{ 4 } [/tex] 's denominator (which is 4).

But, there is a catch here. When multiplying a fraction's denominator before adding it to another, you should make sure that you're preserving its ratio. What does that mean ? 

Let's take the number [tex]\frac { 4 }{ 6 } [/tex] 

(1) if we multiply only its numerator with a number (let it be 3)

[tex]\frac { 3\cdot 4 }{ 6 } \quad =\quad \frac { 12 }{ 6 } \quad =\quad 2[/tex]

You got a new fraction with a different ratio than [tex] \frac{4}{6} [/tex]. And it is also equal to 2, but [tex] \frac{4}{6} [/tex] isn't equal to 2.

(2) if we multiply only its denominator with a number (let it be 3 again)

[tex]\frac { 4 }{ 3\cdot 6 } \quad =\quad \frac { 4 }{ 18 } [/tex]

You got a new fraction again, with a different ration than [tex] \frac{4}{6} [/tex] . 

How can we know that ? Well, if you simplify these two numbers to the simplest number, you'll get a different fraction or integer. Let's do so.

[tex]\frac { 4 }{ 6 } \quad =\quad \frac { 2\cdot 2 }{ 2\cdot 3 } \quad =\quad \frac { 2 }{ 2 } \cdot \frac { 2 }{ 3 } \quad =\quad 1\cdot \frac { 2 }{ 3 } \quad =\quad \frac { 2 }{ 3 } [/tex]

So the simplified form of [tex] \frac{4}{6} [/tex] in the fraction form is [tex] \frac{2}{3} [/tex]

[tex]\frac { 4 }{ 18 } \quad =\quad \frac { 2\cdot 2 }{ 2\cdot 9 } \quad =\quad \frac { 2 }{ 2 } \cdot \frac { 2 }{ 9 } \quad =\quad 1\cdot \frac { 2 }{ 9 } \quad =\quad \frac { 2 }{ 9 } [/tex]

And the simplest form of [tex] \frac{4}{18} [/tex] as a fraction is [tex] \frac{2}{9} [/tex] , which is not equal to [tex] \frac{2}{3} [/tex]

[tex]\frac { 2 }{ 3 } \quad \neq \quad \frac { 2 }{ 9 } [/tex]

So what to do, to preserve the ratio ? Simle. We'll multiply also the numerator with the same number we're going to multiply the denominator with.

Let's get back to our example.

Adding [tex]\frac { 1 }{ 2 } [/tex] and [tex]\frac { 3 }{ 4 } [/tex]

We were going to multiply [tex] \frac{1}{2} [/tex] 's denominator with 2. Now that we know, the ratio must not change, we'll also multiply the numerator with 2.

[tex]\frac { 2\cdot 1 }{ 2\cdot 2 } \quad =\quad \frac { 2 }{ 4 } [/tex]

Now we've got a number which has the same denominator as [tex]\frac { 3 }{ 4 } [/tex]

We can add them now,

[tex]\frac { 2 }{ 4 } \quad +\quad \frac { 3 }{ 4 } \quad =\quad \frac { 2+3 }{ 4 } \quad =\quad \frac { 5 }{ 4 } [/tex]

[tex]\boxed { \frac { 1 }{ 2 } \quad +\quad \frac { 3 }{ 4 } \quad =\quad \frac { 5 }{ 4 } } [/tex]

I hope this was clear, if not please ask and I'll try to explain.