Respuesta :
check the picture below
and recall that
[tex]\bf sin(\theta)=\cfrac{opposite}{hypotenuse} \qquad cos(\theta)=\cfrac{adjacent}{hypotenuse}\\\\ -------------------------------\\\\ sin(75^o)=\cfrac{y}{8}\implies 8sin(75^o)=y \\\\\\ cos(75^o)=\cfrac{x}{8}\implies 8cos(75^o)=x[/tex]
and recall that
[tex]\bf sin(\theta)=\cfrac{opposite}{hypotenuse} \qquad cos(\theta)=\cfrac{adjacent}{hypotenuse}\\\\ -------------------------------\\\\ sin(75^o)=\cfrac{y}{8}\implies 8sin(75^o)=y \\\\\\ cos(75^o)=\cfrac{x}{8}\implies 8cos(75^o)=x[/tex]

Answer:
The length of a diagonal is 21.44 feet ( approximately).
Step-by-step explanation:
Given a trapezoid ABCD
AD= 22 feet
DC=8 feet
AD= DE+EA
Let DE=x and CE= y
In triangle DEC
[tex]\frac{DE}{DC}=cos75^{\circ}[/tex]
[tex]\frac{x}{8}=0.2588[/tex]
[tex]x= 0.2588\times8[/tex]
x= 2.070
DE=x=2.0 feet( approximately)
[tex]\frac{CE}{DC}=sin75^{\circ}[/tex]
[tex]\frac{y}{8}=0.9659[/tex]
[tex]y=8\times0.9659[/tex]
y=7.7274
y=7.73( approximately)
CE=7.73 feet
EA= AD-DE=22-2=20 feet
In triangle AEC
Usin pythogorous theorem
[tex](CE)^2+(EA)^2=(AC)^2[/tex]
[tex](7.73)^2+(20)^2=(AC)^2[/tex]
[tex](AC)^2= 59.7529+400[/tex]
[tex]AC=\sqrt{459.7529}[/tex]
AC=21.44 feet (approximately)
Hence, the length of diagonal =21.44 feet ( approximately).
