At the park there is a pool shaped like a circle. A ring-shaped path goes around the pool.

Step 1
Find the area of the pool shaped like a circle
[tex]\begin{gathered} Area\text{ of a circle=}\pi r^2 \\ Area\text{ of the pool= Area of the inner circle - Area of outer the circle} \\ Area\text{ of the inner circle=3.14}\times6^2=\frac{2826}{25}yd^2 \end{gathered}[/tex][tex]Area\text{ of outer circle=3.14}\times8^2=\frac{5024}{25}[/tex]Step 2
Area of the circular pool will be;
[tex]\begin{gathered} =\frac{5024}{25}-\frac{2826}{25} \\ =\frac{5024-2826}{25}=\frac{2198}{25}=87.92yd^2 \end{gathered}[/tex]Step 3
Find how many gallons of coating is needed
[tex]\begin{gathered} 1\text{ gallon of coating covers 8yd}^2 \\ The\text{ number of required gallons=}\frac{87.92}{8}=10.99\text{ gallons} \\ \approx11\text{ gallons} \end{gathered}[/tex]Answer;
[tex]Approximately\text{ 11 gallons of coating}[/tex]