It is given that the equation (mx)²+ 5nx+4=0 has two equal real roots while the quadratic equation px²-x+m=0 has two distinct roots where m,n and p are constants. Express the range of n in terms of p

Respuesta :

Given:

[tex](mx)^2+5nx+4=0\text{ has two equal real roots}[/tex][tex]px^2-x+m=0\text{ has distict roots. }[/tex]

Taking the first equation:

[tex]a=m^2\text{ ; b=5n ; c=4 }[/tex][tex]b^2-4ac=0[/tex][tex]25n^2-4m^2(4)=0[/tex][tex](5n)^2-(4m)^2=0[/tex][tex](5n+4m)(5n-4m)=0[/tex][tex]5n+4m=0\text{ ; 5n-4m=0}[/tex][tex]m=-\frac{5}{4}n\text{ ; m=}\frac{5}{4}n[/tex][tex]4m=-5n\text{ ; 4m=5n}[/tex]

Taking the second equation:

[tex]a=p\text{ ; b=-1 ; c=m}[/tex][tex]b^2-4ac>0[/tex][tex]1-4pm>0[/tex]

If 4m=5n,

[tex]1-p(5n)>0[/tex][tex]1>p(5n)[/tex][tex]\frac{1}{5p}>n[/tex]

If 4m=-5n,

[tex]1-p(-5n)>0[/tex][tex]1+5pn>0[/tex][tex]5pn>-1[/tex][tex]n>-\frac{1}{5p}[/tex]

Range of n in terms of p:

[tex]\frac{1}{5p}>n>-\frac{1}{5p}[/tex][tex]-\frac{1}{5p}