Respuesta :

Let'sSo, we gave 2 parallel lines and 2 transversals, we have to match the angles.

Let's start with angle b,

[tex]\begin{gathered} b+65=180\text{ (angles in a straight line)} \\ b=180-65 \\ b=115^o \end{gathered}[/tex]

Let's move on to angle e,

[tex]\begin{gathered} e=b\text{ (Vertically opposite angles)} \\ \text{but b = 115}^o \\ e=115^o^{} \end{gathered}[/tex]

Let's move on to angle d,

[tex]d=110^o\text{ (V}ertically\text{ opposite angles)}[/tex]

Moving to angle c, we have;

[tex]c=45^o\text{ (Vertically opposite angles)}[/tex]

And, angle a;

[tex]\begin{gathered} a=b\text{ (Alternate angles)} \\ a=115^o \end{gathered}[/tex]

Ver imagen LoydD489141