An aluminum cup (a = 24 x 106 °C¹) sitting outside on a summer day (T= 33°C) can hold a maximum of 285 mL of a liquid. How much liquid can the glass hold on a cold day (T= -4°C)? How much liquid can it hold on a spring day (T = 17°C)?

An aluminum cup a 24 x 106 C sitting outside on a summer day T 33C can hold a maximum of 285 mL of a liquid How much liquid can the glass hold on a cold day T 4 class=

Respuesta :

ANSWER

[tex]\begin{gathered} (a)\text{ }285.76\text{ }mL \\ \\ (b)\text{ }284.67\text{ }mL \end{gathered}[/tex]

EXPLANATION

Parameters given:

Linear expansivity of aluminum, α = 24 * 10^(-6) C^(-1)

Initial temperature,m T1 = 33°C

Initial volume of liquid, V1 = 285 mL

(a) To find the amount of liquid that the cup can hold on a summer day, apply the formula for volume expansivity:

[tex]3\alpha=\frac{V_2-V_1}{V_1(T_2-T_1)}[/tex]

where T2 = temperature on a cold day

V2 = volume on a cold day

Therefore, solving for V2, we have that the volume that the cup can hold on a cold day will be:

[tex]\begin{gathered} 3*24*10^^{-6}=\frac{V_2-285}{285(-4-33)} \\ \\ 0.000072=\frac{V_2-285}{285*37}=\frac{V_2-285}{-10545} \\ \\ V_2-285=0.000072*-10545=0.75924 \\ \\ V_2=285+0.75924 \\ \\ V_2=285.76\text{ }mL \end{gathered}[/tex]

That is the answer.

(b) To find the volume that the cup can hold on a spring day, apply the same formula but for T2 = 17°C:

[tex]\begin{gathered} 0.000072=\frac{V_2-285}{285(17-33)} \\ \\ 0.000072=\frac{V_2-285}{285*-16}=\frac{V_2-285}{-4560} \\ \\ V_2-285=0.000072*-4560=-0.32832 \\ \\ V_2=285-0.32832 \\ \\ V_2=284.67\text{ }mL \end{gathered}[/tex]

That is the answer.