We want to simplify the following expression:
[tex]\frac{2+\sqrt[]{3}}{2-\sqrt[]{3}}[/tex]This means that we want to "remove" the denominator".
If we observe the denominator:
[tex](2-\sqrt[]{3})[/tex]If we multiply it by
2 + √3, then
[tex]\begin{gathered} (2-\sqrt[]{3})(2+\sqrt[]{3}) \\ =4-\sqrt[]{3}^2=4-3=1 \end{gathered}[/tex]We know that if we multiply both sides of a fraction by the same number or expression, the fraction will remain the same, then we multiply both sides by 2 + √3:
[tex]\frac{2+\sqrt[]{3}}{2-\sqrt[]{3}}=\frac{(2+\sqrt[]{3})(2+\sqrt[]{3})}{(2-\sqrt[]{3})(2+\sqrt[]{3})}[/tex]For the denominator, as we analyzed before
[tex](2-\sqrt[]{3})(2+\sqrt[]{3})=1[/tex]For the denominator:
[tex](2+\sqrt[]{3})(2+\sqrt[]{3})=(2+\sqrt[]{3})^2[/tex]Then,
[tex]\frac{2+\sqrt[]{3}}{2-\sqrt[]{3}}=\frac{(2+\sqrt[]{3})(2+\sqrt[]{3})}{(2-\sqrt[]{3})(2+\sqrt[]{3})}=\frac{(2+\sqrt[]{3})^2}{1}=(2+\sqrt[]{3})^2[/tex]Now, we can simplify the result:
[tex]\begin{gathered} (2+\sqrt[]{3})^2=(2+\sqrt[]{3})(2+\sqrt[]{3}) \\ =2^2+2\sqrt[]{3}+(\sqrt[]{3})^2+2\sqrt[]{3} \\ =4+4\sqrt[]{3}+3 \\ =7+4\sqrt[]{3} \end{gathered}[/tex]Answer: 7+4√3