We want to find a quadratic equation with the following roots:
[tex]\begin{gathered} x_+=2+i\sqrt{\frac{3}{2}} \\ x_-=2-i\sqrt{\frac{3}{2}} \end{gathered}[/tex]Then we have:
[tex]\begin{gathered} y=(x-x_+)\cdot(x-x_-) \\ y=(x-2-i\sqrt{\frac{3}{2}})\cdot(x-2+i\sqrt{\frac{3}{2}}) \\ y=x^2-2x+i\sqrt{\frac{3}{2}}x-2x+4-i2\sqrt{\frac{3}{2}}-i\sqrt{\frac{3}{2}}x+i2\sqrt{\frac{3}{2}}+\frac{3}{2} \\ y=x^2-4x+\frac{11}{2} \end{gathered}[/tex]