EXPLANATION
The equation for half-life is given by the following formula:
[tex]H=\frac{t\cdot\ln(2)}{\ln(\frac{A_0}{A_t})}[/tex]Replacing terms:
[tex]H=\frac{t\cdot\ln(2)}{\ln(\frac{A_0}{A_t})}=\frac{13\cdot\ln(2)}{\ln(\frac{640}{544})}=\frac{9.0109}{0.1625}=55.45[/tex]The half-life time is H =55.4 hours.
B) After three days, that is, 72 hours, the amount of substance will be given by the following relationship:
[tex]A=A_o\cdot e^{-(\frac{\ln2}{H})t}=640\cdot e^{-(\frac{\ln2}{55.4})\cdot72}=640\cdot e^{-0.90084}[/tex]Multiplying terms:
[tex]A=640\cdot0.4062=259.96\text{ Kg}[/tex]There will be 259.96 Kg after 3 days.
C) In order to compute the number of days that will take to the substance to reach a concentration equal to 185 Kg, we need to apply the following formula:
[tex]t=\frac{\ln (\frac{A}{A_o})}{-\frac{\ln (2)}{t\frac{1}{2}}}[/tex]Replacing terms:
[tex]t=\frac{\ln (\frac{185}{544})}{-\frac{\ln (2)}{55.45}}=\frac{-1.0785}{-0.0125}=\frac{1.0785}{0.0125}=86.28\text{ hours}[/tex]It will take 86.28 hours to the substance to reach 185 Kg.