Respuesta :

SOLUTION

Let the first even integer be 'a'.

Let the second integer be (a + 2) since the second is a consecutive even integer.

Half of the smaller (i.e. a) is equal to two more than the larger (i.e. a + 2). In other words:

[tex]\frac{a}{2}=(a+2)+2[/tex]

Evaluate for a

Simplify

[tex]\begin{gathered} \frac{a}{2}=a+2+2 \\ \frac{a}{2}=a+4 \end{gathered}[/tex]

Multiply all through by 2

[tex]\begin{gathered} 2\times\frac{a}{2}=2\times a+2\times4 \\ a=2a+8 \end{gathered}[/tex]

Collect like terms

[tex]\begin{gathered} -8=2a-a \\ -8=a \\ \therefore a=-8 \end{gathered}[/tex]

Hence, the smaller even integer is

[tex]-8[/tex]