SOLUTION
Let the first even integer be 'a'.
Let the second integer be (a + 2) since the second is a consecutive even integer.
Half of the smaller (i.e. a) is equal to two more than the larger (i.e. a + 2). In other words:
[tex]\frac{a}{2}=(a+2)+2[/tex]Evaluate for a
Simplify
[tex]\begin{gathered} \frac{a}{2}=a+2+2 \\ \frac{a}{2}=a+4 \end{gathered}[/tex]Multiply all through by 2
[tex]\begin{gathered} 2\times\frac{a}{2}=2\times a+2\times4 \\ a=2a+8 \end{gathered}[/tex]Collect like terms
[tex]\begin{gathered} -8=2a-a \\ -8=a \\ \therefore a=-8 \end{gathered}[/tex]Hence, the smaller even integer is
[tex]-8[/tex]