Respuesta :

The exact value of sin(7π12) sin ( 7 π 12 ) is √2+√64 2 + 6 4 .

Answer:

C

Step-by-step explanation:

using the addition formula for sine

sin(A + B) = sinAcosB + cosAsinB

note that [tex]\frac{7\pi }{12}[/tex] = [tex]\frac{\pi }{3}[/tex] + [tex]\frac{\pi }{4}[/tex] , then

sin [tex]\frac{7\pi }{12}[/tex]

= sin([tex]\frac{\pi }{3}[/tex] + [tex]\frac{\pi }{4}[/tex] )

= sin[tex]\frac{\pi }{3}[/tex]cos[tex]\frac{\pi }{4}[/tex] + cos[tex]\frac{\pi }{3}[/tex]sin[tex]\frac{\pi }{4}[/tex]

= ( [tex]\frac{\sqrt{3} }{2}[/tex] × [tex]\frac{\sqrt{2} }{2}[/tex] ) + ([tex]\frac{1}{2}[/tex] × [tex]\frac{\sqrt{2} }{2}[/tex] )

= [tex]\frac{\sqrt{6} }{4}[/tex] + [tex]\frac{\sqrt{2} }{4}[/tex]

= [tex]\frac{\sqrt{2}+\sqrt{6} }{4}[/tex]