Respuesta :
Answer:
- Given:-
Side length ( perpendicular = 60 cm)
Hypotenuse = 61 cm
- To find :-
Base length
- Solution:
By Pythagoras theorem ,
Hypotenuse² = Perpendicular² + Base²
61² = 60² + base²
3721-3600 = Base²
√121 = base
11cm = base
Answer:
- Base = x = 11 cm
Step-by-step explanation:
In the question we are given ,
- Side length ( Perpendicular ) = 60 cm
- Hypotenuse = 61 cm
And we have asked to find the length of base that is denoted by x .
Solution : -
According to Pythagoras Theorem ,
[tex] \longrightarrow \purple{\boxed{H {}^{2} = P {}^{2} + B {}^{2} }} \longleftarrow[/tex]
Where ,
- H = Hypotenuse
- P = Perpendicular
- B = Base
Now , substituting value of hypotenuse, perpendicular and base :
[tex] \hookrightarrow \: 61 {}^{2} = 60 {}^{2} + x {}^{2} [/tex]
Now by squaring 61 and 60 , we get :
[tex] \hookrightarrow \:3721 = 3600 + x {}^{2} [/tex]
Now transposing 3600 to left hand side :
[tex] \hookrightarrow \:3721 - 3600 = x {}^{2} [/tex]
Now subtracting 3600 from 3721 :
[tex] \hookrightarrow \:121 = x {}^{2} [/tex]
[tex] \hookrightarrow \: \sqrt{121} = x[/tex]
We know that 11 × 11 is equal to 121 that means square root of 121 is 11 . So :
[tex] \hookrightarrow \: \red{ \boxed{11 \: cm = x}}[/tex]
- x = base
- Henceforth, length of base of right triangle is 11 cm .