Respuesta :
Given :-
- Primary voltage = 220 volt
- No. of turns secondary turns = 8
- No. of primary turms = 800
[tex] \\ \\ [/tex]
To find :-
- Secondary voltage.
[tex] \\ \\ [/tex]
We know:-
[tex] \boxed{ \rm\dfrac{E_s}{E_p}=\dfrac{N_s}{N_p}}[/tex]
where :-
- E_s = Secondary voltage
- E_p = primary voltage
- N_s = No. of turns secondary turns
- N_p = No. of primary turms
[tex] \\ \\ [/tex]
So:-
[tex] \\ [/tex]
[tex] \dashrightarrow\sf\dfrac{E_s}{E_p}=\dfrac{N_s}{N_p}[/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf\dfrac{E_s}{220}=\dfrac{8}{800}[/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf\dfrac{E_s}{220}=\dfrac{8}{8 \times 100}[/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf\dfrac{E_s}{220}=\dfrac{\cancel8}{\cancel8 \times 100}[/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf\dfrac{E_s}{220}=\dfrac{1}{100}[/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf\dfrac{E_s}{1}=\dfrac{220}{100}[/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf{E_s}=\dfrac{220}{100}[/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf{E_s}=\dfrac{22\cancel0}{10\cancel0}[/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\sf{E_s}=\dfrac{22}{10}[/tex]
[tex] \\ \\ [/tex]
[tex] \dashrightarrow\bf{E_s}=2.2 \: volt[/tex]