The primary coil of a transformer has 800 turns and the secondary coil has 8 turns. It is connected to a 220 volt a.c. supply. What will be the output voltage??

Don't Spam ^_^

-_+​

Respuesta :

Given :-

  • Primary voltage = 220 volt

  • No. of turns secondary turns = 8

  • No. of primary turms = 800

[tex] \\ \\ [/tex]

To find :-

  • Secondary voltage.

[tex] \\ \\ [/tex]

We know:-

[tex] \boxed{ \rm\dfrac{E_s}{E_p}=\dfrac{N_s}{N_p}}[/tex]

where :-

  • E_s = Secondary voltage

  • E_p = primary voltage

  • N_s = No. of turns secondary turns

  • N_p = No. of primary turms

[tex] \\ \\ [/tex]

So:-

[tex] \\ [/tex]

[tex] \dashrightarrow\sf\dfrac{E_s}{E_p}=\dfrac{N_s}{N_p}[/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf\dfrac{E_s}{220}=\dfrac{8}{800}[/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf\dfrac{E_s}{220}=\dfrac{8}{8 \times 100}[/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf\dfrac{E_s}{220}=\dfrac{\cancel8}{\cancel8 \times 100}[/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf\dfrac{E_s}{220}=\dfrac{1}{100}[/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf\dfrac{E_s}{1}=\dfrac{220}{100}[/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf{E_s}=\dfrac{220}{100}[/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf{E_s}=\dfrac{22\cancel0}{10\cancel0}[/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\sf{E_s}=\dfrac{22}{10}[/tex]

[tex] \\ \\ [/tex]

[tex] \dashrightarrow\bf{E_s}=2.2 \: volt[/tex]