Respuesta :

Space

Answer:

B.  [tex]\displaystyle \int {(9x^\Big{\frac{7}{2}} - 2x + 8x^\Big{-\frac{1}{2}})} \, dx[/tex]

General Formulas and Concepts:

Algebra I

Distributive Property

Exponents

  • Exponential Property [Multiplying]:                                                         [tex]\displaystyle b^m \cdot b^n = b^{m + n}[/tex]
  • Exponential Property [Rewrite]:                                                               [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex]
  • Exponential Property [Root Rewrite]:                                                       [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]

Calculus

Integration

  • Integrals

U-Substitution

Step-by-step explanation:

Step 1: Define

Identify.

[tex]\displaystyle \int {\sqrt{x} \Big( 9x^3 - 2\sqrt{x} + \frac{8}{x} \Big)} \, dx[/tex]

Step 2: Find

  1. [Integrand] Rewrite [Exponential Property - Root Rewrite]:                   [tex]\displaystyle \int {\sqrt{x} \Big( 9x^3 - 2\sqrt{x} + \frac{8}{x} \Big)} \, dx = \int {x^\Big{\frac{1}{2}} \Big( 9x^3 - 2x^\Big{\frac{1}{2}} + \frac{8}{x} \Big)} \, dx[/tex]
  2. [Integrand] Rewrite [Exponential Property - Rewrite]:                             [tex]\displaystyle \int {\sqrt{x} \Big( 9x^3 - 2\sqrt{x} + \frac{8}{x} \Big)} \, dx = \int {x^\Big{\frac{1}{2}} \Big( 9x^3 - 2x^\Big{\frac{1}{2}} + 8x^{-1} \Big)} \, dx[/tex]
  3. [Integrand] Expand [Distributive Property]:                                             [tex]\displaystyle \int {\sqrt{x} \Big( 9x^3 - 2\sqrt{x} + \frac{8}{x} \Big)} \, dx = \int {\Big( 9x^3x^\Big{\frac{1}{2}} - 2x^\Big{\frac{1}{2}}x^\Big{\frac{1}{2}} + 8x^{-1}x^\Big{\frac{1}{2}} \Big)} \, dx[/tex]
  4. [Integrand] Simplify [Exponential Rule - Multiplying]:                             [tex]\displaystyle \int {\sqrt{x} \Big( 9x^3 - 2\sqrt{x} + \frac{8}{x} \Big)} \, dx = \int {(9x^\Big{\frac{7}{2}} - 2x + 8x^\Big{-\frac{1}{2}})} \, dx[/tex]

∴ our answer is B.

---

Learn more about integrals: https://brainly.com/question/20156869

---

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration