Respuesta :

Answer:

[tex]y=e^x+3[/tex]

Step-by-step explanation:

By inspection, we can see that the curve crosses the y-axis at (0, 4)

Therefore, when x = 0, y = 4

Inputting x = 0 into the equations:

[tex]y=e^{x-3} \implies y=e^{-3}[/tex]

[tex]y=e^x+3 \implies y=e^0+3=1+3=4[/tex]

[tex]y=e^{x+3} \implies y=e^4[/tex]

[tex]y=e^{x-3}+3^3=e^{-3}+27[/tex]

Therefore, the only equation that gives y = 4 when x = 0 is [tex]y=e^x+3[/tex]

  • y intercept is (0,4)

Check option B

[tex]\\ \rm\longmapsto y=e^x+3[/tex]

Put values

[tex]\\ \rm\longmapsto y=e^0+3=1+3=4[/tex]

Hence option B is correct