1) If

[tex] \frac{1}{a + 1} + \frac{1}{b + 1} + \frac{1}{c + 1} = 2[/tex]
[tex]then \: {a}^{2} + {b}^{2} + {c}^{2} is[/tex]
Option :-

[tex]a) \frac{3}{4} [/tex]
[tex]b) \frac{1}{3} [/tex]
[tex]c) \frac{27}{16} [/tex]
[tex]d) \frac{4}{3} [/tex]


● NEED GENUINE ANSWER
●DON'T SPAM OTHERWISE ANSWER WILL BE REPORT​

Respuesta :

The sum of the square of the constants is 3/4

Given the equation [tex]\frac{1}{a+1} +\frac{1}{b+1} +\frac{1}{c+1} =2[/tex]

The partial form of the equation is given as:

  • [tex]\frac{1}{a +1} = 2\\[/tex]

Solve for the constant "a"

[tex]\frac{1}{a +1} = 2\\a+1 = \frac{1}{2} \\a = \frac{1}{2} - 1\\a =-\frac{1}{2}[/tex]

Hence [tex]a=b=c=-\frac{1}{2} \\[/tex]

Taking the square of the constant, we will have:

[tex]a^2 + b^2 + c^2 =(-1/2)^2 +(-1/2)^2+(-1/2)^2\\a^2 + b^2 + c^2 =1/4 + 1/4 + 1/4\\a^2 + b^2 + c^2 =3/4[/tex]

Hence the sum of the square of the constants is 3/4

Learn more on partial fraction here: https://brainly.com/question/24594390

Answer -the sum of the square of the consonants is 3/4