Respuesta :

Space

Answer:

[tex]\displaystyle \frac{x^4 + 10x^3 + 25x^2 + 3x - 24}{x^2 + 5x - 4} = x^2 + 5x - 4 + \frac{3x - 8}{x^2 + 5x - 4}[/tex]

General Formulas and Concepts:

Algebra I

Terms/Coefficients

  • Expanding

Algebra II

Polynomial Division

  • Long Division
  • Synthetic Division

Step-by-step explanation:

Step 1: Define

Identify.

[tex]\displaystyle \frac{x^4 + 10x^3 + 25x^2 + 3x - 24}{x^2 + 5x - 4}[/tex]

Step 2: Long Division

See attachment.

  1. Multiply quotient a and divisor, then subtract from dividend:                      [tex]\displaystyle x^2(x^2 + 5x - 4) = x^4 + 5x^3 - 4x^2 \leftarrow \text{red 1}[/tex]
  2. Multiply quotient b and divisor, then subtract from new dividend:              [tex]\displaystyle 5x(x^2 + 5x - 4) = 5x^3 + 25x^2 - 20x \leftarrow \text{red 2}[/tex]
  3. Multiply quotient c and divisor, then subtract from new dividend:              [tex]\displaystyle 4(x^2 + 5x - 4) = 4x^2 + 20x - 16 \leftarrow \text{red 3}[/tex]
  4. Write remainder:                                                                                               [tex]\displaystyle \frac{r(x)}{b(x)} = \frac{3x - 8}{x^2 + 5x - 4}[/tex]

Please excuse the bad handwriting.

Ver imagen Space