Answer:
1) Coordinates of center of circle of given equation is (-3,-5).
2) The equation of a circle is [tex](x-3)^{2} +(y-2)^{2}[/tex]=4.
3)Coordinates of center of circle of graph 2 are( -2,1) , radius of circle = 3.
4)
Standard equation of circle [tex](x+1)^{2} +(y-2)^{2}[/tex]=[tex]1^{2}[/tex].
Step-by-step explanation:
Given: The equation of a circle is (x + 3)2 + (y + 5)2 = 8 and graph.
To find : Coordinates of center of circle and standard equation of of given circle .
Solution : We have [tex](x+3)^{2} +(y+5)^{2}[/tex]=8.
On comparing with the standard equation of circle [tex](x-h)^{2} +(y-k)^{2}[/tex]=[tex]r^{2}[/tex].
Coordinates of center of circle are h,k and radius of circle =r .
1) Coordinates of center of circle of given equation is (-3,-5).
2) From graph 1 we can see coordinates of center of circle are (3,2)
The equation of a circle is [tex](x-3)^{2} +(y-2)^{2}[/tex]=4.
3)Coordinates of center of circle of graph 2 are( -2,1) and radius of circle = 3.
4) Coordinates of center of circle of graph 3 are( -1,2) and radius of circle = 1
then standard equation of circle [tex](x+1)^{2} +(y-2)^{2}[/tex]=[tex]1^{2}[/tex].