Answer:
because P(x) has factors of (x-2) and (x+1) => x = 2 and x = -1 are the solutions of P(x)
so we have:
[tex]\left \{ {{2^{4}+2^{3}a-2^{2}+2b-12 =0} \atop {1-a-1-b-12=0}} \right.\\=>\left \{ {{8a+2b=0} \atop {a+b=-12}} \right.\\<=>\left \{ {{4a+b=0} \atop {a+b=-12}} \right.\\<=>\left \{ {{a=4} \atop {b=-16}} \right.[/tex]
=> [tex]P(x)=x^{4} + 4x^{3}-x^{2} -16x-12[/tex]
With P(x) = 0
=> [tex]x^{4}+4x^{3}-x^{2} -16x-12 = 0[/tex]
=> ........
Step-by-step explanation: