Respuesta :

Answer:

[tex]f'(x)=1+\ln x[/tex]

Step-by-step explanation:

[tex]f'(x)[/tex] is notation for the first derivative of [tex]f(x)[/tex].

Recall the product rule:

[tex](f\cdot g)'=f'\cdot g+g'\cdot f[/tex]

Therefore, we have:

[tex]\displaystyle \frac{d}{dx}(x\ln x)=\frac{d}{dx}(x)\cdot \ln(x)+\frac{d}{dx}(\ln x)\cdot x[/tex]

Note that:

[tex]\displaystyle \frac{d}{dx}(x)=1,\\\\\frac{d}{dx}(\ln x)=\frac{1}{x}[/tex]

Simplify:

[tex]\displaystyle \frac{d}{dx}(x\ln x)=1\cdot \ln x+\frac{1}{x}\cdot x, \\\\\frac{d}{dx}(x\ln x)= \ln x+1=\boxed{1+\ln x}[/tex]

The derivative is:

[tex] \bold{f(x) \: = \: x \: \times \: (In(x))}[/tex]

[tex] \bold{f'(x) \: = \: \frac{d}{dx} (x \: \times \: In(x))}[/tex]

[tex] \bold{f'(x) \: = \: \frac{d}{dx} (x) \: \times \: In(x) \: + \: x \: \times \: \frac{d}{dx} (In(x))}[/tex]

[tex] \bold{f'(x) \: = \: 1In(x) \: + \: x \: \times \frac{1}{x} }[/tex]

[tex] \bold{f'(x) \: = \: In(x) \: + \: x \: \times \: \frac{1}{x} }[/tex]

[tex] \boxed{ \bold{f'(x) \: = \: In(x) \: + \: 1}}[/tex]

MissSpanish