A clay vase on a potter's wheel experiences an angular acceleration of 7.24 rad/s2 due to the application of a 13.3-N m net torque. Find the total moment of inertia of the vase and potter's wheel.

Respuesta :

Answer:

[tex]I=1.83\ kg-m^2[/tex]

Explanation:

Given that,

The angular acceleration of the wheel,[tex]\alpha =7.24\ rad/s^2[/tex]

Net torque,[tex]\tau=13.3\ N-m[/tex]

We need to find the total moment of inertia of the vase and potter's wheel. We know that,

Net torque,[tex]\tau=I\alpha[/tex]

Where

I is the moment of inertia

So,

[tex]I=\dfrac{\tau}{\alpha }\\\\I=\dfrac{13.3}{7.24}\\\\I=1.83\ kg-m^2[/tex]

So, the moment of inertia of the vase is equal to [tex]1.83\ kg-m^2[/tex].