Respuesta :
Given:
Kiosk is the combination of a cylinder and a cone.
Diameter of cylinder and cone = 5 m
Height of the cylinder = 3 m
Height of the cone = 2 m
To find:
The volume of the kiosk.
Solution:
We know that the radius is half of the diameter. So,
Radius of cylinder and cone = [tex]\dfrac{5}{2}[/tex] m
= [tex]2.5[/tex] m
Volume of the cylinder is:
[tex]V_1=\pi r^2h[/tex]
Where, r is the radius and h is the height of the cylinder.
Putting [tex]\pi =3.14, r=2.5, h=3[/tex] in the above formula, we get
[tex]V_1=(3.14)(2.5)^2(3)[/tex]
[tex]V_1=(3.14)(6.25)(3)[/tex]
[tex]V_1=58.875[/tex]
Volume of a cone is:
[tex]V_2=\dfrac{1}{3}\pi r^2h[/tex]
Where, r is the radius and h is the height of the cone.
Putting [tex]\pi =3.14, r=2.5, h=2[/tex] in the above formula, we get
[tex]V_2=\dfrac{1}{3}(3.14)(2.5)^2(2)[/tex]
[tex]V_2=\dfrac{1}{3}(3.14)(6.25)(2)[/tex]
[tex]V_2\approx 13.083[/tex]
The volume of the kiosk is the sum of volume of cylinder and the volume of cone.
[tex]V=V_1+V_2[/tex]
[tex]V=58.875+13.083[/tex]
[tex]V=71.958[/tex]
[tex]V\approx 72[/tex]
Therefore, the volume of the kiosk is 72 cubic meter.