A journal article reports that a sample of size was used as a basis for calculating a CI for the true average natural frequency (Hz) of delaminated beams of a certain type. The resulting interval was . You decide that a confidence level of is more appropriate than the level used. What are the limits of the interval

Respuesta :

Answer:

The limit of the (228.533, 234.735)

Step-by-step explanation:

The values are missing in the given question. Therefore, in order to attempt this question, we will make assumptions.

So, let's assume that:

sample size of the journal article that was reported = 5

which is applied for determining a 95% CI

Also, assuming that the resulting interval = (229.764, 233.504)

However, if we are to use a 99% CI which we deemed to be more appropriate;

Then, our objective is to find the limits of this particular interval in question.

To do that:

We need to first find the sample mean at 95% CI by using the formula:

[tex]\Big ( \bar {x} - t_{\alpha/2, df} \ \dfrac{s}{\sqrt{n}}}, \bar x + t_{\alpha/2, df} \ \dfrac{s}{\sqrt{n}}} \Big) = (229.764,233.504)[/tex]

Since; df = n - 1

df = 5 - 1

df = 4

Then;

[tex]\Big ( \bar {x} - t_{\alpha/2, 4} \ \dfrac{s}{\sqrt{n}}}, \bar x + t_{\alpha/2, 4} \ \dfrac{s}{\sqrt{n}}} \Big) = (233.504+229.764)[/tex]

[tex]2 \bar {x} = (463.268)[/tex]

[tex]\bar {x} =\dfrac{463.268}{2 }[/tex]

[tex]\bar {x} =231.634[/tex]

Sample mean = 231.634

Using the same formula to determine the standard deviation, we have:

[tex]\Big ( \bar {x} - t_{\alpha/2, df} \ \dfrac{s}{\sqrt{n}}}, \bar x + t_{\alpha/2, df} \ \dfrac{s}{\sqrt{n}}} \Big) = (229.764,233.504)[/tex]

[tex]\Big ( \bar {x} - t_{\alpha/2, 4} \ \dfrac{s}{\sqrt{n}}}, \bar x + t_{\alpha/2, 4} \ \dfrac{s}{\sqrt{n}}} \Big) = (233.504-229.764)[/tex]

[tex]\Big ( (\bar x + t_{\alpha/2, 4} \ \dfrac{s}{\sqrt{n}}} )- (\bar {x} - t_{\alpha/2, 4} \ \dfrac{s}{\sqrt{n}}}) \Big) = (233.504-229.764)[/tex]

[tex]\Big ( (\bar x + t_{0.05/2, 4} \ \dfrac{s}{\sqrt{4}}} )- (\bar {x} - t_{0.05/2, 4} \ \dfrac{s}{\sqrt{5}}}) \Big) = (233.504-229.764)[/tex]

At t = 0.025 and df = 4; = 2.776

[tex]2\times 2.776 \dfrac{s}{\sqrt{5}}= 3.74[/tex]

[tex]5.552 \dfrac{s}{\sqrt{5}}= 3.74[/tex]

[tex]\dfrac{s}{\sqrt{5}}= \dfrac{ 3.74}{5.552}[/tex]

[tex]\dfrac{s}{\sqrt{5}}= 0.6736[/tex]

[tex]s = 0.6736 \times \sqrt{5}[/tex]

s = 1.5063

The 99% CI is:

[tex]\implies \Big(\bar x \pm t_{\alpha/2,4} \dfrac{s}{\sqrt{n}} \Big)[/tex]

At t =0.005 and df =4; = 4.604

[tex]\implies \Big(231.634 \pm 4.604 \dfrac{1.5063}{\sqrt{5}} \Big)[/tex]

[tex]\implies \Big(231.634 \pm 4.604 (0.67364) \Big)[/tex]

[tex]\implies \Big(231.634 \pm 3.1014 \Big)[/tex]

[tex]\implies \Big((231.634 - 3.1014), (231.634 + 3.1014) \Big)[/tex]

[tex]\implies \Big( 228.533, 234.735 \Big)[/tex]