Chegg Detecting acid rain: power by hand. Even though software is used in practice to calculate power, doing the work by hand in a few examples will build your understanding of this concept. Find the power of the test in Exercise 15.41 for a sample of size n

Respuesta :

Solution :

a). Standard error of sample mean =  [tex]$\frac{\sigma}{\sqrt n}$[/tex]

                                                          [tex]$=\frac{0.5}{\sqrt{15}}$[/tex]

                                                        = 0.1290994

The observed mean point be [tex]$\overline x$[/tex]

Test statistics z = [tex]$\frac{\text{(observed mean - hypothesized mean)}}{\text{standard error}}$[/tex]

                         [tex]$=\frac{\overline x -5}{0.1290994}$[/tex]

For the left one sided test, critical value of z to reject [tex]$H_0 = -1.64$[/tex]

We reject [tex]$H_0$[/tex] when test statics z < -1.64

b).  Value of  [tex]$\overline x$[/tex]  z < -1.64

   [tex]$=\frac{(\overline x-5)}{0.1290994}<-1.64$[/tex]

  [tex]$=\overline x < 5-0.1290994 \times 1.64$[/tex]

  [tex]$=\overline x < 4.78828$[/tex]

∴ we reject [tex]$H_0$[/tex] when [tex]$\overline x < 4.78828$[/tex]

c). The probability of rejecting [tex]$H_0$[/tex] when [tex]$\mu = 4.7$[/tex],

  [tex]$P(x<4.788277) = P \left(z < \left(\frac{4.788277-4.7}{0.1290994}\right)\right)$[/tex]

                            [tex]$=P(z<0.68)$[/tex]

                           [tex]$=0.7517$[/tex]