Respuesta :

Answer:

(19a-279)/18

 

Step-by-step explanation:

STEP

1

:

           17

Simplify   ——

           2  

Equation at the end of step

1

:

    2         7     17

 (((—•a)-7)+(——•a))-——

    3        18     2  

STEP

2

:

            7

Simplify   ——

           18

Equation at the end of step

2

:

    2         7     17

 (((—•a)-7)+(——•a))-——

    3        18     2  

STEP

3

:

           2

Simplify   —

           3

Equation at the end of step

3

:

    2               7a     17

 (((— • a) -  7) +  ——) -  ——

    3               18     2  

STEP

4

:

Rewriting the whole as an Equivalent Fraction

4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  3  as the denominator :

        7     7 • 3

   7 =  —  =  —————

        1       3  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

4.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

2a - (7 • 3)     2a - 21

————————————  =  ———————

     3              3    

Equation at the end of step

4

:

  (2a - 21)    7a     17

 (————————— +  ——) -  ——

      3        18     2  

STEP

5

:

Calculating the Least Common Multiple :

5.1    Find the Least Common Multiple

     The left denominator is :       3  

     The right denominator is :       18  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

3 1 2 2

2 0 1 1

Product of all  

Prime Factors  3 18 18

     Least Common Multiple:

     18  

Calculating Multipliers :

5.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 6

  Right_M = L.C.M / R_Deno = 1

Making Equivalent Fractions :

5.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      (2a-21) • 6

  ——————————————————  =   ———————————

        L.C.M                 18      

  R. Mult. • R. Num.      7a

  ——————————————————  =   ——

        L.C.M             18

Adding fractions that have a common denominator :

5.4       Adding up the two equivalent fractions

(2a-21) • 6 + 7a     19a - 126

————————————————  =  —————————

       18               18    

Equation at the end of step

5

:

 (19a - 126)    17

 ——————————— -  ——

     18         2  

STEP

6

:

Calculating the Least Common Multiple :

6.1    Find the Least Common Multiple

     The left denominator is :       18  

     The right denominator is :       2  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

2 1 1 1

3 2 0 2

Product of all  

Prime Factors  18 2 18

     Least Common Multiple:

     18  

Calculating Multipliers :

6.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 1

  Right_M = L.C.M / R_Deno = 9

Making Equivalent Fractions :

6.3      Rewrite the two fractions into equivalent fractions

  L. Mult. • L. Num.      (19a-126)

  ——————————————————  =   —————————

        L.C.M                18    

  R. Mult. • R. Num.      17 • 9

  ——————————————————  =   ——————

        L.C.M               18  

Adding fractions that have a common denominator :

6.4       Adding up the two equivalent fractions

(19a-126) - (17 • 9)     19a - 279

————————————————————  =  —————————

         18                 18    

Final result :

 19a - 279

 —————————

    18