Respuesta :

cairde

Answer:

x=11

∠DMC=39

∠MAD=66

∠ADM=36

∠ADC=18

Step-by-step explanation:

Since c is the incenter, CA, CM and CD bisect ∠DAM, ∠AMD and ∠ADM respectively. Therefore, ∠CAD=∠CAM, ∠AMC= ∠DMC, and ∠ADC=∠MDC.

X

∠AMC= ∠DMC

3x+6=8x-49

5x=55

x=11

∠DMC

∠DMC=8x-49=8(11)-49=88-49=39

∠MAD

∠CAD=∠CAM

∠MAD=∠CAD+∠CAM.

∠MAD=33+33=66

∠ADM

∠DMA=2(∠DMC)=2(39)=78

Angles in a triangle add to 180:

∠MAD+∠ADM+∠DMA=180

66+∠ADM+78=180

∠ADM=180-144=36

∠ADC

∠ADM=2(∠ADC)

∠ADC=36/2=18