Respuesta :

Answer:

A: [tex]\frac{1}{2\sqrt{x-1} }[/tex]

B:[tex]\frac{1}{4\sqrt[4]{x^{3} } }[/tex]

c: 2x

Step-by-step explanation:

To find the derivative of x raised to the nth power we use the following template

[tex]x^{n}=nx^{n-1}[/tex]

Something else to keep in mind is that

[tex]\sqrt[n]{x^{y}}=x^{y/n}[/tex]

So knowing this we can rewrite a as follows

[tex]\sqrt{x-1} =(x-1)^{1/2}[/tex]

so we can use the template above and get

[tex]\frac{1}{2}(x-1)^{.5-1}[/tex]

So that simplifies to

[tex]\frac{1}{2}*(x-1)^{-\frac{1}{2}[/tex]

[tex]\frac{(x-1)^{-.5}}{2}[/tex]

[tex]\frac{1}{2\sqrt{x-1} }[/tex]

B: Same kind of deal here

[tex]\sqrt[4]{x}=x^{\frac{1}{4} }[/tex]

[tex]\frac{1}{4} *x^{\frac{1}{4}-1}[/tex]

[tex]\frac{x^{-\frac{3}{4}}}{4} =\frac{1}{4\sqrt[4]{x^{3} } }[/tex]

C: this one is by far the easiest because the derivative of a constant is 0 so we can just apply the same template from before and get

2x