An object in space has altitude of 2210 km, velocity of 7000 m/s and flight path angle of 20 degrees. Find the eccentricity, semi-major axis, angular momentum/mass, and kinetic and potential energies/mass

Respuesta :

Answer:

Eccentricity = 0.0557

Semi-major axis = 9,095 km

Angular momentum/mass = 60,116 [tex]\frac{km^{2} }{Sec}[/tex]

Kinetic energies/mass = 24,500 KJ

Potential energies/mass = 21,673 KJ

Explanation:

Eccentricity

To find the eccentricity use the following formula

Eccentricity = [ Altitude from the earth x ( [tex]Velocity^{2}[/tex] / Gravitational parameter for the Earth ) ] - 1

Where

Altitude from the earth radius = Radius of the earth + Altitude of the earth from radius = 6,378 km + 2,210 km = 8,588 km

Velocity = 7,000 m/s

Gravitational parameter for the Earth = 3.986004418 × [tex]10^{14}[/tex]

Eccentricity = ?

Placing values in the formula

Eccentricity = [ ( 8,588 km x 1000 ) x ( [tex]7000^{2}[/tex] / 3.986004418 × [tex]10^{14}[/tex]   ) ] - 1

Eccentricity = 0.0557

Semi-major axis

Total Distance = Semi-major axis x ( 1 - Eccentricity )

Where

Total Distance = 8,588 km

Eccentricity = 0.0557

8,588 x 1,000 m = Semi-major axis x ( 1 - 0.0557 )

8,588,000 m = Semi-major axis x 0.9443

Semi-major axis = 8,588,000 m / 0.9443

Semi-major axis = 9,094,567.40 m

Semi-major axis = 9,094.56740 km

Semi-major axis = 9,095 km

Angular momentum/mass

L = MVR

L/M = VR

Where

V = Velocity = [tex]\frac{7,000 m/s}{1000}[/tex] = 7 km/s

R = Total Radius = Radius of Earth + Altitude = 6,378 km + 2,210 km = 8,588 km

Placing values in the formula

L/M = 7 km/s x 8,588 km = 60,116 [tex]\frac{km^{2} }{Sec}[/tex]

Kinetic energies/mass

Ke = I [tex]W^{2}[/tex]

Ke = [tex]\frac{1}{2} mr^{2}[/tex] [tex]W^{2}[/tex] ( Where I = [tex]mr^{2}[/tex] )

[tex]\frac{ke}{m}[/tex] = [tex]\frac{r^2}{2}[/tex] [tex]W^{2}[/tex]

[tex]\frac{ke}{m}[/tex] = [tex]\frac{r^2}{2}[/tex] [tex]\frac{V^2}{r^2}[/tex] ( [tex]W^{2}[/tex] = [tex]\frac{V^2}{r^2}[/tex] )

[tex]\frac{ke}{m}[/tex] = [tex]\frac{V^2}{2}[/tex]

[tex]\frac{ke}{m}[/tex] = [tex]\frac{7000^2}{2}[/tex]

[tex]\frac{ke}{m}[/tex] = 24,500,000 J

[tex]\frac{ke}{m}[/tex] = 24,500 KJ

Potential energies/mass

PE = mgh

[tex]\frac{PE}{m}[/tex] = gh

Where

g = 9.807 [tex]\frac{m}{s^2}[/tex]

h = 2,210 km x 1,000 = 2,210,000 m

Placing values in the formula

[tex]\frac{PE}{m}[/tex] = 9.807 [tex]\frac{m}{s^2}[/tex]  x 2,210,000 m

[tex]\frac{PE}{m}[/tex] = 21,673,470 J

[tex]\frac{PE}{m}[/tex] = 21,673.470 KJ

[tex]\frac{PE}{m}[/tex] = 21,673 KJ