Respuesta :

Answer:

[tex]d=6\sqrt{2}[/tex]

Step-by-step explanation:

Distance Formula: [tex]d =\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }[/tex]

[tex]d =\sqrt{(-4-2)^2+(1-7)^2 }[/tex]

[tex]d =\sqrt{36 + 36}[/tex]

[tex]d=\sqrt{72} =6\sqrt{2}[/tex]

Space

Answer:

[tex]d = 6\sqrt{2}[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra II

  • Distance Formula: [tex]d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Step-by-step explanation:

Step 1: Define

Point R (-4, 1)

Point S (2, 7)

Step 2: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute [DF]:                    [tex]d = \sqrt{(2+4)^2+(7-1)^2}[/tex]
  2. Add/Subtract:                       [tex]d = \sqrt{(6)^2+(6)^2}[/tex]
  3. Exponents:                           [tex]d = \sqrt{36+36}[/tex]
  4. Add:                                      [tex]d = \sqrt{72}[/tex]
  5. Simplify:                                [tex]d = 6\sqrt{2}[/tex]