Respuesta :
Answer:
[tex]d=6\sqrt{2}[/tex]
Step-by-step explanation:
Distance Formula: [tex]d =\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }[/tex]
[tex]d =\sqrt{(-4-2)^2+(1-7)^2 }[/tex]
[tex]d =\sqrt{36 + 36}[/tex]
[tex]d=\sqrt{72} =6\sqrt{2}[/tex]
Answer:
[tex]d = 6\sqrt{2}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra II
- Distance Formula: [tex]d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Point R (-4, 1)
Point S (2, 7)
Step 2: Find distance d
Simply plug in the 2 coordinates into the distance formula to find distance d
- Substitute [DF]: [tex]d = \sqrt{(2+4)^2+(7-1)^2}[/tex]
- Add/Subtract: [tex]d = \sqrt{(6)^2+(6)^2}[/tex]
- Exponents: [tex]d = \sqrt{36+36}[/tex]
- Add: [tex]d = \sqrt{72}[/tex]
- Simplify: [tex]d = 6\sqrt{2}[/tex]