Respuesta :

Answer:

1

Step-by-step explanation:

Using the sum to product formulae and the exact values

sin x + sin y = 2sin([tex]\frac{x+y}{2}[/tex] )cos([tex]\frac{x-y}{2}[/tex] )

cos x + cos y = 2cos([tex]\frac{x+y}{2}[/tex] )cos([tex]\frac{x-y}{2}[/tex] )

sin45° = cos45° = [tex]\frac{1}{\sqrt{2} }[/tex] , cos30° = [tex]\frac{\sqrt{3} }{2}[/tex]

Given

[tex]\frac{sin75+sin15}{cos75+cos15}[/tex]

= [tex]\frac{2sin(\frac{75+15}{2})cos(\frac{75-15}{2}) }{2cos(\frac{75+15}{2})cos(\frac{75-15}{2}) }[/tex]

= [tex]\frac{2si45cos30}{2cos45cos30}[/tex]

= (2 × [tex]\frac{1}{\sqrt{2} }[/tex] × [tex]\frac{\sqrt{3} }{2}[/tex] ) ÷ (2 × [tex]\frac{1}{\sqrt{2} }[/tex] × [tex]\frac{\sqrt{3} }{2}[/tex] )

= 1

Answer:  1

Step-by-step explanation:

sin 75 = sin(30 + 45) = sin30 · cos45  + cos30 · sin45

                                 [tex]=\dfrac{1}{2}\cdot \dfrac{\sqrt2}{2}+\dfrac{\sqrt3}{2}\cdot\dfrac{\sqrt2}{2}\qquad =\dfrac{\sqrt2+\sqrt6}{4}[/tex]

sin 15 = sin(45 - 30) = sin45 · cos30  - cos45 · sin30

                                  [tex]=\dfrac{\sqrt2}{2}\cdot \dfrac{\sqrt3}{2}-\dfrac{\sqrt2}{2}\cdot\dfrac{1}{2}\qquad =\dfrac{\sqrt6+\sqrt2}{4}[/tex]

cos 75 = cos(30 + 45) = cos30 · cos45  - sin30 · sin45

                                   [tex]=\dfrac{\sqrt3}{2}\cdot \dfrac{\sqrt2}{2}-\dfrac{1}{2}\cdot\dfrac{\sqrt2}{2}\qquad =\dfrac{\sqrt6-\sqrt2}{4}[/tex]

cos 15 = cos(45 - 30) = cos45 · cos30  + sin45 · sin30

                                   [tex]=\dfrac{\sqrt2}{2}\cdot \dfrac{\sqrt3}{2}+\dfrac{\sqrt2}{2}\cdot\dfrac{1}{2}\qquad =\dfrac{\sqrt6+\sqrt2}{4}[/tex]

       [tex]\dfrac{\sin 75+\sin 15}{\cos 75+\cos 15}[/tex]

   [tex]=\dfrac{\frac{\sqrt2+\sqrt6}{4}+\frac{\sqrt6-\sqrt2}{4}}{\frac{\sqrt6-\sqrt2}{4}+\frac{\sqrt6+\sqrt2}{4}}\\\\\\=\dfrac{\frac{\sqrt6}{2}}{\frac{\sqrt6}{2}}\\\\\\=1[/tex]

Ver imagen tramserran
Ver imagen tramserran