Answer: [tex]\dfrac{x^2}{64}+\dfrac{y^2}{16}=1[/tex]
Step-by-step explanation:
The standard form for an ellipse is: [tex]\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1[/tex] where
Given: (h, k) = (0, 0)
a = 8 (distance on x-axis from origin to -8)
b = 4 (distance on y-axis from origin to 4)
Input h = 0, k = 0, a = 8, b = 4 into the standard form for an ellipse:
[tex]\dfrac{(x-0)^2}{8^2}+\dfrac{(y-0)^2}{4^2}=1[/tex]
[tex]=\dfrac{x^2}{64}+\dfrac{y^2}{16}=1[/tex]