Answer: The rate constant for the given reaction is [tex]9.69\times 10^{-2}m^{-1}s^{-1}[/tex]
Explanation:
The integrated rate law equation for second order reaction follows:
[tex]k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)[/tex]
where,
k = rate constant = ?
t = time taken = 142 second
[A] = concentration of substance after time 't' = [tex]3.50\times 10^{-2}M[/tex]
[tex][A]_o[/tex] = Initial concentration = [tex]6.75\times 10^{-2}M[/tex]
Putting values in above equation, we get:
[tex]k=\frac{1}{142}\left (\frac{1}{(3.50\times 10^{-2})}-\frac{1}{(6.75\times 10^{-2})}\right)\\\\k=9.69\times 10^{-2}m^{-1}s^{-1}[/tex]
Hence, the rate constant for the given reaction is [tex]9.69\times 10^{-2}m^{-1}s^{-1}[/tex]