contestada

The measures of the angles of A ABC are given by the expressions in the table.
Angle
Measure
(6 - 1)
20°
(x + 14)
What are the measures of angles A and C?
Enter your answers in the boxes
mZA=
mZC=

Respuesta :

Question:

The measures of the angles of △ABC are given by the expressions in the table. Angle Measure

A ​ (6x−1)° ​

B 20°

C (x + 14)°

What are the measures of angles A and C? Enter your answers in the boxes. ​

m∠A= ​ º ​

m∠C= ​ º

Answer:

The measures of the angles A and C are [tex]$\angle A=125^{\circ}$[/tex] and [tex]$\angle \mathrm{C}=35^{\circ}$[/tex]

Explanation:

The measures of angles of ΔABC are [tex]\angle A =(6x-1)^{\circ}[/tex] , [tex]\angle B=20^{\circ}[/tex] and [tex]\angle C=(x+14)^{\circ}[/tex]

By angle sum property, we have,

      [tex]\angle A+ \angle B+ \angle C = 180^{\circ}[/tex]

[tex]6x-1+20+x+14=180[/tex]

                    [tex]7x+33=180[/tex]

                            [tex]7x=147[/tex]

                              [tex]x=21[/tex]

Thus, substituting [tex]x=21[/tex] in [tex]\angle A =(6x-1)^{\circ}[/tex] , we get,

[tex]\angle A =(6x-1)^{\circ}=(6(21)-1)^{\circ}[/tex]

[tex]\angle A = 126-1[/tex]

[tex]\angle A=125^{\circ}[/tex]

Also, substituting [tex]x=21[/tex] in  [tex]\angle C=(x+14)^{\circ}[/tex] , we get,

[tex]\angle C=(x+14)^{\circ}=(21+14)^{\circ}[/tex]

[tex]$\angle \mathrm{C}=35^{\circ}$[/tex]

Hence, the value of A and C are [tex]$\angle A=125^{\circ}$[/tex] and [tex]$\angle \mathrm{C}=35^{\circ}$[/tex]

The measures of angles A and C is mathematically given as

mZA= 281/3

mZC = 178/3

What are the measures of angles A and C?

An Angle is a corner compressing of a projecting part .

Question Parameter(s):

Angle Measure

(6 - 1)

20°

(x + 14)

Generally, the equation for a triangle  is mathematically given as

∠A + ∠B + ∠C = 180

(4x - 13)° + (15)° + (2x + 18)° = 180°

6x = 160

x = 26.67

In conclusion

mZA = ( 4x - 13 )

mZA= 281/3

mZC = ( 2x + 18 )

mZC = 178/3

Read more about Angle

https://brainly.com/question/14362353