Respuesta :
Add
-9 + 6 = -3
Divide by 2
-1.5
2) -1 + 7 = 6 / 2 = 3 ; 3 + -1 = 2 / 2 = 1
(3, 1)
-9 + 6 = -3
Divide by 2
-1.5
2) -1 + 7 = 6 / 2 = 3 ; 3 + -1 = 2 / 2 = 1
(3, 1)
By definition, the midpoint is given by:
[tex]m = (\frac{x1+x2}{2}, \frac{y1+y2}{2}) [/tex]
Part A:
For the line segment we have:
[tex]m = \frac{-9+6}{2} [/tex]
[tex]m= \frac{-3}{2} [/tex]
[tex]m = -1.5[/tex]
Answer:
the coordinate of the midpoint of the segment is:
B. -1.5
Part B:
For line segment HX we have:
[tex]m = (\frac{-1+7}{2}, \frac{3-1}{2}) [/tex]
[tex]m = (\frac{6}{2}, \frac{2}{2}) [/tex]
[tex]m = (3,1) [/tex]
Answer:
the coordinates of the midpoint of the segment is:
A. (3,1)
[tex]m = (\frac{x1+x2}{2}, \frac{y1+y2}{2}) [/tex]
Part A:
For the line segment we have:
[tex]m = \frac{-9+6}{2} [/tex]
[tex]m= \frac{-3}{2} [/tex]
[tex]m = -1.5[/tex]
Answer:
the coordinate of the midpoint of the segment is:
B. -1.5
Part B:
For line segment HX we have:
[tex]m = (\frac{-1+7}{2}, \frac{3-1}{2}) [/tex]
[tex]m = (\frac{6}{2}, \frac{2}{2}) [/tex]
[tex]m = (3,1) [/tex]
Answer:
the coordinates of the midpoint of the segment is:
A. (3,1)