A silver dollar is dropped from the top of a building that is 1344 feet tall. Use the position function below for free-falling objects. s(t) = -16t^(2) + v0t + s0

(a) Determine the position and velocity functions for the coin. s(t)=_____________ v(t)=_____________

(b) Determine the average velocity on the interval [3,4]. ______________= ft/s

(c) Find the instantaneous velocities when t = 3 s and t = 4 s. v(3)=________ v(4)=________

(d) Find the time required for the coin to reach the ground level. t=___________s

(e) Find the velocity of the coin at impact. vf =___________ft/s

Respuesta :

Answer:

a. position function of the coin:

    [tex]s=-16t^2+1344[/tex]

    Now the velocity function:

    [tex]v=-32t[/tex]

b. [tex]v_{avg}=-112\ m.s^{-1}[/tex]

c. [tex]v_3=-96\ m.s^{-1}[/tex]        &   [tex]v_4=-128\ m.s^{-1}[/tex]

d. [tex]t=9.165\ s[/tex]

e. [tex]v_f=293.285\ m.s^{-1}[/tex]

Explanation:

Given:

  • height of dropping the silver dollar, [tex]h=1344\ ft[/tex]

Given position function associated with free falling objects:

[tex]s=-16t^2+v_0t+s_0[/tex]

here:

[tex]s_0=[/tex] initial height

[tex]v_0=[/tex]initial velocity

[tex]t=[/tex] time of observation

a)

position function of the coin:

[tex]s=-16t^2+1344[/tex]

∵the object is dropped it was initially at rest

Now the velocity function:

[tex]v=\frac{d}{dt} s[/tex]

[tex]v=-32t[/tex]

b)

we know average velocity is given as:

[tex]\rm v_{avg}=\frac{total\ displacement}{total\ time}[/tex]

Displacement in the given interval:

[tex]s_{_{3-4}}=s_4-s_3[/tex]

[tex]s_{_{3-4}}=(-16\times 4^2+1344)-(-16\times 3^2+1344)[/tex]

[tex]s_{_{3-4}}=-112\ ft[/tex]

Now,

[tex]v_{avg}=\frac{-112}{4-3}[/tex]

[tex]v_{avg}=-112\ m.s^{-1}[/tex]

c)

Instantaneous velocity at t = 3 s:

[tex]v_3=-32\times 3[/tex]

[tex]v_3=-96\ m.s^{-1}[/tex]

Instantaneous velocity at t = 4 s:

[tex]v_4=-32\times 4[/tex]

[tex]v_4=-128\ m.s^{-1}[/tex]

d)

At ground we  have s=0:

Put this in position function:

[tex]0=-16t^2+1344[/tex]

[tex]t=9.165\ s[/tex]

e)

Velocity of the coin at impact:

[tex]v_f=-32\times 9.165[/tex]

[tex]v_f=293.285\ m.s^{-1}[/tex]