Answer:
The solved given equation
[tex](\frac{x+2}{5})+(\frac{x+1}{3})=(\frac{x-3}{10})-2[/tex] is x=-7
Step-by-step explanation:
Given equation is [tex](\frac{x+2}{5})+(\frac{x+1}{3})=(\frac{x-3}{10})-2[/tex]
To solve the given equation as below :
[tex](\frac{x+2}{5})+(\frac{x+1}{3})=(\frac{x-3}{10})-2[/tex] ( by using the distributive property )
[tex]\frac{3x+6+5x+5}{15}=\frac{x-3-20}{10}[/tex] ( adding the like terms )
[tex]\frac{8x+11}{15}=\frac{x-23}{10}[/tex]
Multiply into (10(15) on both sides we get
[tex]\frac{8x+11}{15}\times (10)(15)=\frac{x-23}{10}\times (10)(15)[/tex]
[tex](8x+11)\times (10)=(x-23)\times (15)[/tex] ( by using the distributive property )
[tex]80x+110-15x+345=0[/tex] ( adding the like terms )
[tex]65x+455=0[/tex]
[tex]65x=-455[/tex]
[tex]x=-\frac{455}{65}[/tex]
Therefore x=-7
Therefore the solved given equation is x=-7