Respuesta :

Answer:

The solved given equation

[tex](\frac{x+2}{5})+(\frac{x+1}{3})=(\frac{x-3}{10})-2[/tex]  is x=-7

Step-by-step explanation:

Given equation is [tex](\frac{x+2}{5})+(\frac{x+1}{3})=(\frac{x-3}{10})-2[/tex]

To solve the given equation as below :

[tex](\frac{x+2}{5})+(\frac{x+1}{3})=(\frac{x-3}{10})-2[/tex] ( by using the distributive property )

[tex]\frac{3x+6+5x+5}{15}=\frac{x-3-20}{10}[/tex] ( adding the like terms )

[tex]\frac{8x+11}{15}=\frac{x-23}{10}[/tex]

Multiply into (10(15) on both sides we get

[tex]\frac{8x+11}{15}\times (10)(15)=\frac{x-23}{10}\times (10)(15)[/tex]

[tex](8x+11)\times (10)=(x-23)\times (15)[/tex] ( by using the distributive property )

[tex]80x+110-15x+345=0[/tex] ( adding the like terms )

[tex]65x+455=0[/tex]

[tex]65x=-455[/tex]

[tex]x=-\frac{455}{65}[/tex]

Therefore x=-7

Therefore the solved given equation is x=-7