An electron in the beam of a cathod-ray tube is accelerated by a potential difference of 2.12 kV . Then it passes through a region of transverse magnetic field, where it moves in a circular arc with a radius of 0.170 m .
What is the magnitude of the field?

Respuesta :

Answer:

B=9.1397*10^-4 Tesla

Explanation:

To find the velocity first we put kinetic energy og electron is equal to potential energy of electron

K.E=P.E

[tex]\frac{1}{2}*m*v^{2}  =e*V[/tex]

where :

m is the mass of electron

v is the velocity

V is the potential difference

[tex]v=\sqrt{\frac{2*e*V}{m} }[/tex]    eq 1

Radius of electron moving in magnetic field is given by:

[tex]R=\frac{m*v}{q*B}[/tex]       eq 2

where:

m is the mass of electron

v is the velocity

q=e=charge of electron

B is the magnitude of magnetic field

Put v from eq 1 into eq 2

[tex]R=\frac{m*\sqrt{\frac{2*e*V}{m} } }{e B}[/tex]

[tex]B=\sqrt{\frac{2*m*V}{e*R^{2} } }[/tex]

[tex]B=\sqrt{\frac{2*(9.31*10^{-31})*(2.12*10^{3})  }{(1.60*10^{-19})*(0.170)^{2}  } }[/tex]

B=9.1397*10^-4 Tesla