Finddy/dxandd2y/dx2.x = t2 + 7, y = t2 + 5tdydx = d2ydx2 = For which values of t is the curve concave upward? (Enter your answer using interval notation.)=

Respuesta :

[tex]\begin{cases}x(t)=t^2+7\\y(t)=t^2+5t\end{cases}[/tex]

By the chain rule,

[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\mathrm dy}{\mathrm dt}\dfrac{\mathrm dt}{\mathrm dx}=\dfrac{\frac{\mathrm dy}{\mathrm dt}}{\frac{\mathrm dx}{\mathrm dt}}[/tex]

We have

[tex]\dfrac{\mathrm dx}{\mathrm dt}=2t[/tex]

[tex]\dfrac{\mathrm dy}{\mathrm dt}=2t+5[/tex]

[tex]\implies\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{2t+5}{2t}=\boxed{1+\dfrac5{2t}}[/tex]

Notice that this derivative is a function of [tex]t[/tex]. Let [tex]f(t)=\frac{\mathrm dy}{\mathrm dx}[/tex]. Then by the chain rule,

[tex]\dfrac{\mathrm d^2y}{\mathrm dx^2}=\dfrac{\mathrm df}{\mathrm dx}=\dfrac{\mathrm df}{\mathrm dt}\dfrac{\mathrm dt}{\mathrm dx}=\dfrac{\frac{\mathrm df}{\mathrm dt}}{\frac{\mathrm dx}{\mathrm dt}}[/tex]

We have

[tex]\dfrac{\mathrm df}{\mathrm dt}=-\dfrac5{2t^2}[/tex]

[tex]\implies\dfrac{\mathrm d^2y}{\mathrm dx^2}=\dfrac{-\frac5{2t^2}}{2t}=\boxed{-\dfrac5{4t^3}}[/tex]

The curve is concave upward wherever the second derivative is positive. This happens whenever [tex]t^3<0[/tex], or [tex]\boxed{t<0}[/tex].