A cosmetic company makes three bottles of scented lotion using the recipe shown. Each bottle holds a different amount of lotion. Drag numbers to show how much of each scent should be used in each bottle of lotion.
1/8= vanilla sent
3/8= almond sent
1/2= pineapple sent

bottle 1:
vanilla=?
almond=?
pineapple=4

bottle 2:
vanilla=?
almond=6
pineapple=?


bottle 3:
vanilla=1 1/2
almond=?
pineapple=?

15 PTS!!!!

Respuesta :

Answer:

Part 1) Bottle 1 (vanilla=1,almond=3,pineapple=4)

Part 2) Bottle 2 (vanilla=2,almond=6,pineapple=8)

Part 3) Bottle 3 (vanilla=1 1/2,almond=4 1/2,pineapple=6)

Step-by-step explanation:

Let

x ----> the amount of vanilla sent

y ----> amount of almond sent

z ----> the amount of pineapple sent

we know that

[tex]x:y:z=\frac{1}{8}:\frac{3}{8}:\frac{1}{2}[/tex]

so

[tex]\frac{x}{y}=\frac{1}{8}:\frac{3}{8}[/tex]

[tex]\frac{x}{y}=\frac{1}{3}[/tex]

[tex]x=\frac{y}{3}[/tex] -----> equation A

[tex]\frac{x}{z}=\frac{1}{8}:\frac{1}{2}[/tex]

[tex]\frac{x}{z}=\frac{1}{4}[/tex]

[tex]x=\frac{1}{4}z[/tex] -----> equation B

[tex]\frac{y}{z}=\frac{3}{8}:\frac{1}{2}[/tex]

[tex]\frac{y}{z}=\frac{3}{4}[/tex]

[tex]y=\frac{3}{4}z[/tex] -----> equation C

Part 1) Bottle 1

vanilla=?

almond=?

pineapple=4

we have

[tex]z=4[/tex]

Find the value of x

substitute the value of z in equation B

[tex]x=\frac{1}{4}(4)[/tex]

[tex]x=1[/tex]

Find the value of y

substitute the value of z in equation C

[tex]y=\frac{3}{4}(4)[/tex]

[tex]y=3[/tex]

therefore

Bottle 1

vanilla=1

almond=3

pineapple=4

Part 2) Bottle 2

vanilla=?

almond=6

pineapple=?

we have

[tex]y=6[/tex]

Find the value of x

substitute the value of y in equation A

[tex]x=\frac{6}{3}=2[/tex]

Find the value of z

substitute the value of x in equation B

[tex]2=\frac{1}{4}z[/tex]

solve for z

[tex]z=8[/tex]

therefore

Bottle 2

vanilla=2

almond=6

pineapple=8

Part 3) Bottle 3

vanilla=1 1/2

almond=?

pineapple=?

we have

[tex]x=1\frac{1}{2}[/tex]

convert to an improper fraction

[tex]x=1\frac{1}{2}=\frac{1*2+1}{2}=\frac{3}{2}[/tex]

Find the value of y

substitute the value of x in equation A

[tex]\frac{3}{2}=\frac{y}{3}[/tex]

[tex]y=\frac{9}{2}[/tex]

convert to mixed number

[tex]y=\frac{9}{2}=\frac{8}{2}+\frac{1}{2}=4\frac{1}{2}[/tex]

Find the value of z

substitute the value of x in equation B

[tex]\frac{3}{2}=\frac{1}{4}z[/tex]

[tex]z=6[/tex]

therefore

Bottle 3

vanilla=1 1/2

almond=4 1/2

pineapple=6

therefore

Bottle 3

vanilla=1 1/2

almond=4 1/2

pineapple=6Part 1) Bottle 1 (vanilla=1,almond=3,pineapple=4)

Part 2) Bottle 2 (vanilla=2,almond=6,pineapple=8)

Part 3) Bottle 3 (vanilla=1 1/2,almond=4 1/2,pineapple=6)

Step-by-step explanation:

Let

x ----> the amount of vanilla sent

y ----> amount of almond sent

z ----> the amount of pineapple sent

we know that

so

-----> equation A

-----> equation B

-----> equation C

Part 1) Bottle 1

vanilla=?

almond=?

pineapple=4

we have

Find the value of x

substitute the value of z in equation B

Find the value of y

substitute the value of z in equation C

therefore

Bottle 1

vanilla=1

almond=3

pineapple=4

Part 2) Bottle 2

vanilla=?

almond=6

pineapple=?

we have

Find the value of x

substitute the value of y in equation A

Find the value of z

substitute the value of x in equation B

solve for z

therefore

Bottle 2

vanilla=2

almond=6

pineapple=8

Part 3) Bottle 3

vanilla=1 1/2

almond=?

pineapple=?

we have

convert to an improper fraction

Find the value of y

substitute the value of x in equation A

convert to mixed number

Find the value of z

substitute the value of x in equation B

therefore

Bottle 3

vanilla=1 1/2

almond=4 1/2

pineapple=6