In triangle ABC mzA -45, mzB = 40", and a = 7. Which equation should you
solve to find b?

Answer:
Option A. [tex]\frac{sin(45\°)}{7}=\frac{sin(40\°)}{b}[/tex]
Step-by-step explanation:
we know that
Applying the law of sines in the triangle ABC
[tex]\frac{sin(A)}{a}=\frac{sin(B)}{b}[/tex]
substitute the given values
[tex]\frac{sin(45\°)}{7}=\frac{sin(40\°)}{b}[/tex]
[tex]b=\frac{7}{sin(45\°)}sin(40\°)\\\\b=6.4\ units[/tex]