Respuesta :

Answer:

The positive real number is 26

Step-by-step explanation:

Let

x ----> the number

we know that

The algebraic expression that represent this problem is

[tex]x^{2} =15x+286[/tex]

so

[tex]x^{2}-15x-286=0[/tex]

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2}-15x-286=0[/tex]

so

[tex]a=1\\b=-15\\c=-286[/tex]

substitute in the formula

[tex]x=\frac{-(-15)(+/-)\sqrt{-15^{2}-4(1)(-286)}} {2(1)}[/tex]

[tex]x=\frac{15(+/-)\sqrt{1,369}} {2}[/tex]

[tex]x=\frac{15(+/-)37}{2}[/tex]

[tex]x_1=\frac{15(+)37}{2}=26[/tex]

[tex]x_2=\frac{15(-)37}{2}=-11[/tex]  ---> the solution cannot be negative

therefore

The positive real number is 26