Answer:
v₃ = 28.2842 m/s
∅ = 45°
Explanation:
Given info
vi = 0 m/s
m₁ = m₂ = m
m₃ = 3m
mi = m₁ + m₂ + m₃ = m + m + 3m = 5m
v₁x= - 60 m/s
v₁y= 0 m/s
v₂x= 0 m/s
v₂y= - 60 m/s
We can apply the Principle of Conservation of Momentum as follows
pix = pfx ⇒ mi*vix = m₁*v₁x + m₂v₂x + m₃*v₃x
⇒ 5m*(0) = m*(-60) + m*(0) + 3m*v₃x
⇒ 0 = -60*m + 3m*v₃x ⇒ v₃x = 20 m/s (→) (I)
piy = pfy ⇒ mi*viy = m₁*v₁y + m₂v₂y + m₃*v₃y
⇒ 5m*(0) = m*(0) + m*(-60) + 3m*v₃y
⇒ 0 = -60*m + 3m*v₃y ⇒ v₃y = 20 m/s (↑) (II)
then
v₃ = √(v₃x² + v₃y²)
⇒ v₃ = √((20 m/s)² + (20 m/s)²) = 20√2 m/s = 28.2842 m/s
is the magnitude of its velocity immediately after the explosion
∅ = tan⁻¹(v₃y / v₃x)
⇒ ∅ = tan⁻¹(20 m/s / 20 m/s) = tan⁻¹(1) = 45°
is the direction of its velocity immediately after the explosion (the angle with respect to the x-axis)