Answer:
16172
Step-by-step explanation:
[tex]\mu = 22000[/tex]
[tex]\sigma = 3100[/tex]
We are given that The tire manufacturer wants to offer a money-back guarantee so that no more than 3% of tires will qualify for a refund.
So, P(X≤x)=0.03
[tex]P(\frac{x-\mu}{\sigma}\leq \frac{x-22000}{3100} )=0.03[/tex]
Refer the z table
So, z corresponding to p value 0.03 is -1.88
So, [tex]z=\frac{x-\mu}{\sigma}[/tex]
[tex]-1.88=\frac{x-22000}{3100}[/tex]
[tex]-1.88 \times 3100=x-22000[/tex]
[tex]-5828=x-22000[/tex]
[tex]-5828+22000=x[/tex]
[tex]16172=x[/tex]
Hence the minimum number of miles the manufacturer should guarantee that the tires will last is 16172