Answer:
The value of x is 28.
The value of y is 32.
Step-by-step explanation:
Given : Equation 1 - [tex]\frac{3}{4}(x-12)=12[/tex]
Equation 2 - [tex]\frac{3}{4}y-12=12[/tex]
To find : Solve each equation ?
Solution :
Equation 1 - [tex]\frac{3}{4}(x-12)=12[/tex]
Apply distributive property, [tex]a(b-c)=ab-ac[/tex]
[tex]\frac{3}{4}x-\frac{3}{4}\times 12=12[/tex]
[tex]\frac{3}{4}x-3\times 3=12[/tex]
[tex]\frac{3}{4}x-9=12[/tex]
[tex]\frac{3}{4}x=12+9[/tex]
[tex]\frac{3}{4}x=21[/tex]
[tex]x=\frac{21\times 4}{3}[/tex]
[tex]x=28[/tex]
Equation 2 - [tex]\frac{3}{4}y-12=12[/tex]
Add 12 both side,
[tex]\frac{3}{4}y-12+12=12+12[/tex]
[tex]\frac{3}{4}y=24[/tex]
[tex]y=\frac{24\times 4}{3}[/tex]
[tex]y=32[/tex]
The value of x is 28.
The value of y is 32.