Use t = 4x + 1 to write the parametric equations that can represent y = 12x + 5.
Question 8 options:
a. x = t-1/4; y = 3t – 2
b. x = 4t – 1; y = 48t + 7
c. x = t-1/4 ; y = 3t + 2
d. x =t+1/4 ; y = 3t + 2

Respuesta :

Answer:

Answer C:  [tex]x=\frac{t-1}{4}[/tex] and [tex]y=3t+2[/tex]

Step-by-step explanation:

Solve for x in the first equation given:

[tex]t=4x+1\\t-1=4x\\\frac{t-1}{4} = x\\[/tex]

Now use this expression to replace x in terms of t in the second equation:

[tex]y=12x+5\\y=12(\frac{t-1}{4}) +5\\ y=3(t-1)+5\\y=3t-3+5\\y=3t+2[/tex]

Answer:

c. x = t-1/4 ; y = 3t + 2

Step-by-step explanation: