Respuesta :

Answer:

Part 1) [tex]30< 6x< 48[/tex]

Part 2) [tex]-80< -10x< -50[/tex]

Part 3) [tex]0<x-5< 3[/tex]

Part 4) [tex]17< 3x+2< 26[/tex]

Step-by-step explanation:

we know that

[tex]5< x< 8[/tex]

The solution for x is the interval ----> (5,8)

All real numbers greater than 5 and less than 8

Part 1) Find all possible values of the expression 6x

so

For x < 8

The expression value is  6x < (6)(8) -----> 6x < 48

For x > 5

The expression value is  6x > (6)(5) -----> 6x > 30

therefore

[tex]30< 6x< 48[/tex]

Part 2) Find all possible values of the expression -10x

so

For x < 8

The expression value is  -10x > (-10)(8) -----> -10x > -80

For x > 5

The expression value is  -10x < (-10)(5) -----> -10x < -50

therefore

[tex]-80< -10x< -50[/tex]

Part 3) Find all possible values of the expression x-5

so

For x < 8

The expression value is  x-5 < 8-5 -----> x-5 < 3

For x > 5

The expression value is  x-5 > 5-5 -----> x-5 > 0

therefore

[tex]0<x-5< 3[/tex]

Part 4) Find all possible values of the expression 3x+2

so

For x < 8

The expression value is  3x+2 < 3(8)+2 -----> 3x+2 < 26

For x > 5

The expression value is  3x+2 > 3(5)+2 -----> 3x+2 > 17

therefore

[tex]17< 3x+2< 26[/tex]

Answer:

6x: 30<6x<48

-10x: -80<-10x<-50

x-5: 0<x-5<3

3x+2: 17<3x+2<26