Answer: 693 years
Step-by-step explanation:
Expression for rate law for first order kinetics is given by:
[tex]A(t) =A_0e^{kt}[/tex]
k = rate constant
t = time taken for decomposition = 1
[tex]A_0[/tex] = Initial amount of the reactant
[tex]A_t[/tex] = amount of the reactant left =[tex]A_0-\frac{0.1}{100}\times A_0=0.999A_0[/tex]
[tex]0.999A_0=A_0e^{k\times 1}[/tex]
[tex]0.999=e^k[/tex]
[tex]k=-0.001year^{-1}[/tex]
for half life : [tex]t=t_\frac{1}{2}[/tex]
[tex]A_t=\frac{1}{2}A_o[/tex]
Putting in the values , we get
[tex]\frac{1}{2}A_0=A_0e^{-0.001\times t_\frac{1}{2}[/tex]
[tex]t_\frac{1}{2}=693 years[/tex]
Thus half life of this isotope, to the nearest year is 693.